Adaptive Iterated Square-Root Cubature Kalman Filter and Its Application to SLAM of a Mobile Robot
نویسندگان
چکیده
For the mobile robot Simultaneous Localization and Mapping (SLAM),a new algorithm is proposed, and named Adaptive Iterated Square-Root Cubature Kalman Filter based SLAM algorithm (AISRCKF-SLAM). The main contribution of the algorithm is that the numerical integration method based on cubature rule is directly used to calculate the SLAM posterior probability density. To improve innovation covariance and cross-covariance, the latest measurements are iteratively used in the measurement updating. The algorithm can reduce linearization error and improve the accuracy of the SLAM algorithm. The algorithm also used adaptive iterating estimation restricted by the iterative sentencing guideline to adjust the proportion of the observation and dynamic model, to make the estimated square root of the error covariance more accurate and reasonable. In experiments, the proposed algorithm is compared with Extended Kalman Filter based SLAM algorithm (EKF-SLAM), Unscented Kalman Filter based SLAM algorithm (UKF-SLAM) and Square-Root Cubature Kalman Filter based SLAM algorithm (SRCKF-SLAM. The results indicate that the proposed algorithm having with the higher accuracy of the state estimation is obtained to compare with the EKF-SLAM algorithm, the UKFSLAM algorithm and the SRCKF-SLAM algorithm.
منابع مشابه
New Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملSquare Root Iterated Kalman Filter for Bearing-Only SLAM
This paper presents an undelayed solution to the bearing-only simultaneous localization and mapping problem (SLAM). We employ a square-root iterated Kalman filter for nonlinear state estimation. The proposed technique incorporates a modified Kalman update that is equivalent to a variable-step iterative Gauss-Newton method, and is numerically stable because it maintains a square-root decompositi...
متن کاملAn SLAM Algorithm Based on Square-root Cubature Particle Filter
The lack of the latest measurement information and the Particle serious degradation cause low estimation precision in the tradition particle filter SLAM (simultaneous localization and mapping). For solve this problem, a SRCPF-SLAM (square cubature particle filter simultaneous localization and mapping) is proposed in this paper. The algorithm fuses the latest measurement information in the stage...
متن کاملEffects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کامل